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Abstract

With the development of optical measurement techniques it is possible to obtain vast amounts of data. In vibrometry

applications in particular operational deflection shapes are often obtained with very high spatial resolution. Fortunately,

many techniques exist to reduce (approximate) the measurement data. One of the most common techniques for evaluating

optical measurement data is by means of a Fourier analysis. However, this technique suffers from what is known as

leakage when a non-integer number of periods is considered. This gives rise to non-negligible errors, which will obviously

hamper the accuracy of the synthesized shape. Another technique such as a discrete cosine transform, used in the widely

spread -jpeg standard does not suffer these anomalies but can still prove erroneous at times. One of the more recent

approaches is via a so-called regressive discrete Fourier series (introduced by Arruda) which suffers one disadvantage. The

problem statement is nonlinear in the parameters and needs a priori information about the deflection shape. This can be

resolved by using the optimized regressive discrete fourier series (ORDFS), introduced in this article, which uses a

nonlinear least squares approach. In this article the method will be applied in particular to the reduction of data for laser

vibrometer measurements performed on an inorganic phosphate cement (IPC) beam (1D), as well as on a car door (2D).

The proposed technique will also be validated on simulations to illustrate the properties concerning compression ratio and

synthesized mode shape error. The introduced method will be bench marked for compression ratio and synthesized

deflection shape error with all prior mentioned techniques.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

There are many ways to achieve data reduction. An important and frequently used approach is to apply a
Fourier decomposition where the signal (e.g. the operational deflection shapes (ODS)) is approximated by
means of a series of DFT lines [1]. This approximation, however, introduces a distortion effect called leakage.
This is due to the assumption that the signal at hand is periodic within the measurement window. A common
solution to this problem is using windows to reduce the effect, which however broadens the frequency
resolution. A more accurate technique that also offers powerful compression capabilities is the discrete cosine
transform (DCT) [2]. This technique is the basis of the widely spread -jpeg standard for compressing images.
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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More recently a powerful technique was introduced by J.R.F. Arruda [3,4] using regressive discrete Fourier
series (RDFS). The technique suffers one disadvantage, namely the fact that the basic problem statement is
nonlinear in the parameters. This was solved initially by choosing a random period for the desired signal,
which in a lot of cases is not entirely accurate. In Refs. [5–7] this problem was circumvented by fitting a general
pole-residue model on the data (referred to as GRDFS), thereby estimating all unknown parameters
(frequency, phase, damping and residues). While proving quite robust and accurate, the latter approach does
exhibit a quite large computational load. In this article an approach is shown, which is based again on the
RDFS method, but one that is computationally much lighter than the GRDFS but more accurate than the
traditional RDFS. This is done by estimating the a priori unknown period in a robust fashion using a
nonlinear approach. In the following sections the method will be described and a comparison with the classical
DFT, DCT and RDFS reduction techniques will be made. In Section 3 simulations will be shown illustrating
the novel technique’s reduction capacity and accuracy. In Section 4 experiments will be shown on an inorganic
phosphate composite (IPC) beam and on a rear car door and finally some conclusions will be drawn in the last
section.
2. Regressive discrete Fourier series

2.1. Background of the regressive Fourier technique

Regressive Fourier series were first introduced by Arruda [3,4]. The technique boils down to representing a
periodic sequence by a series of sines and cosines, like a Fourier series, however, by tuning the period of the
series to reduce the leakage effect. In depth detail on the method can be found in the previously mentioned
articles as well as in Refs. [6,8].

For clarities sake the two-dimensional representation of a mode shape zðn;mÞ with constant spatial
resolution Dx and Dy by a regressive discrete Fourier series will be shown here (the one-dimensional equations
are analogous). The length of the data in x is MDx and the length of the data in y is NDy:

zðn;mÞ ¼
XN�1

kx¼0

XM�1

ky¼0

Sðkx; kyÞe
i2pkxn=Nei2pkym=M . (1)

with n ¼ 0 . . .N and m ¼ 0 . . .M and Sðkx; kyÞ represent the two-dimensional discrete Fourier coefficients:

Sðkx; kyÞ ¼
1

N

1

M

XN

n¼0

XM

m¼0

zðn;mÞei2p�kxn=Nei2p�kym=M . (2)

The method proposed by Arruda now stipulates that the data should also be represented by a two-dimensional
discrete Fourier series, but where the periods of the Fourier series aN and bM are not equal to the original
data lengths N and M in x- and y-direction, respectively:

zðn;mÞ ¼
Xp

kx¼�p

Xq

ky¼�q

Sðkx; kyÞe
i2pkxn=aNei2pkym=bM . (3)

The data reduction is achieved because the number of components p and q are far lower than the original data
lengths N and M. The unknown coefficients Sðkx; kyÞ can be determined by formulating a least-squares
problem. Define a matrix ZaN ðkx; nÞ ¼ ei2pkxn=aN and ZbM ðky;mÞ ¼ ei2pkym=bM . This allows Eq. (3) to be
written as

z ¼ ZaNSZbM. (4)

The matrix S containing the unknown coefficients can now be determined and its size is ð2pþ 1Þ � ð2qþ 1Þ:

S ¼ ðZaN
tZaNÞ

�1ZaN
tzZbM

tðZbMZbM
tÞ
�1, (5)

where t denotes a complex conjugate transpose of a matrix.
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Now in practice the factor a (and b in the two-dimensional case) is usually not known beforehand so it
should be estimated as well together with the residues leading to a nonlinear least-squares problem. In the next
section, an approach is introduced based on a regressive discrete Fourier series which allows estimation of
these parameters.
2.2. Data reduction

To understand how the data reduction is achieved one can consider the following complex-valued
multiharmonic function:

zðxÞ ¼
XL

l¼0

ale
�sl xþiol x. (6)

Evaluating this function at discrete locations x ¼ nDx;Dx denoting a constant spatial resolution and
n ¼ 0 . . .N � 1, results in the following sequence:

z½x� ¼ zðnDxÞ ¼
XL

l¼0

all
n
l (7)

with ll ¼ e�slDxþiolDx and ol ;sl denoting respectively the spatial frequency and damping of component l in the
operational deflection shape.

The reduction of data is possible due to the fact that the number of components L with which one models
the complete sequence in Eq. (6) is much smaller than the number of measurement points N. Thus data
reduction for the ODS discussed further on in this article means applying the proposed algorithm to the raw
shape itself.
2.3. Optimized regressive discrete Fourier series (ORDFS)

As was stated in the previous section the arbitrary factor a (and b for the two-dimensional case) is not
known a priori. This means that Eq. (5) and its one-dimensional counterpart are nonlinear in the parameters.
To resolve this, a non-linear least-squares approach can be used. Using the built-in function lsqnonlin of
the signal processing toolbox [9] in Matlab, it is possible to estimate the unknown parameters a (and b)
together with the unknown coefficients S. This function uses a classical Gauss–Newton iterative procedure to
solve this problem. The starting values for a (and b) can be chosen arbitrarily, in an interval [0y2]. Usually
the initial values can be chosen equal to one (which makes the frequency lines coincide with the used DFT
grid). However, when these initial values are far off from the final values, the Gauss–Newton algorithm should
be replaced by the more robust Levenberg–Marquardt optimization. In the following only the latter algorithm
will be withheld.

However, the parameters a (and b) are not the same for every vibration pattern ZðoÞ. Therefore, when
calculating the reduced FRF-matrix Hvirtual an optimized value for a (and b) should be found over the entire
frequency range. This can be done by creating a global mode shape Zglobal which contains all the vibration
patterns in the frequency band of interest:

Zglobal ¼
X

o

ZðoÞ (8)

This global mode shape can then be transformed using Eq. (3), but where the parameters a and b are now
global parameters.

Zglobalðx; yÞ ¼
Xp

kx¼�p

Xq

ky¼�q

Sðk; lÞei2p
kxn
aN ei2p

kym

bM . (9)

These global parameters a and b can now be used in the calculation of Zvirtual at every frequency o.
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3. Simulations

In this section the ORDFS approach will be tested with respect to the number of necessary components to
obtain a fit of the data. The technique is compared with the classical DCT which is used in, e.g. the popular
jpeg-compression standard. It will also be compared to the classical DFT and the standard RDFS with
a ¼ 1:4, which was prone to be an optimal value [3]. The vibration pattern that will be used is composed of 3
complex poles in both x and y-direction:

zðxk; ylÞ ¼ ei0:1xkei3:5yl þ ei1:5xkei2:3yl þ ei3:7xkei1:1yl , (10)

where xk ¼ 2pk=64 and yl ¼ 2pl=64 with k ¼ 0; . . . ; 63 and l ¼ 0; . . . ; 63. 20 % noise was added on top of the
vibration pattern. The vibration pattern with and without the added noise is shown in Fig. 1. The model order
was increased sequentially for all 4 techniques, after which the mode shape error was calculated (Eq. (11)). For
the ORDFS this means that ð2pþ 1Þ � ð2qþ 1Þ coefficients are estimated for the amplitudes S. The model
order was taken the same in both directions for simplicities sake, however, this is not a necessity. The same
model orders or number of coefficients was taken for the other techniques as well.

err ¼

PNk�1
n¼0 jðzvirtualðnÞ � zðnÞÞj2

jzvirtualðnÞj
2

, (11)

where zvirtual represents the data reduced mode shape.
In Table 1 the relative vibration pattern errors are listed for the DCT, DFT, RDFS and ORDFS techniques.

It is clear that using the minimal order (in this case 49 coefficients; p ¼ q ¼ 3) the error is very high for the
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Fig. 1. Simulated vibration pattern zðxk ; ylÞ. (a) noiseless and (b) with 20% Gaussian noise added.

Table 1

Relative vibration pattern error for the various simulated model orders for the DCT, DFT, RDFS and ORDFS technique

Error (%) Order (3,3) Order (4,4) Order (5,5)

DCT 3.87 1.66 1.10

DFT 5.98 4.43 3.44

RDFS 56.36 9.4 0.85

ORDFS 61.87 0.47 0.14
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ORDFS and RDFS, even higher than for both other techniques. However, as the model order increases the
error value drops massively and the ORDFS approach proves superior .

In the next section, the proposed ORDFS method will be used to reduce data for measurements on a
composite beam and a car door.
4. Experiments

4.1. 1D-experiments on an inorganic phosphate cement beam

In this section an experiment carried out with a Polytec PSV 300 laser vibrometer [10] on a
inorganic phosphate cement (IPC) composite beam will be tackled using the ORDFS technique. Fig. 2
shows the test set-up.

The results will be compared with the same techniques mentioned in Section 3. The beam was excited
acoustically with a swept sine and was suspended in a ‘free-free’ manner. For illustrative purposes we show the
results of an operational deflection shape around the second mode (Fig. 3). Data reduction will again be
applied directly to the deflection shape.

Starting from the estimated mode shape Fig. 3 illustrates that with a DFT analysis, using the seven
most important DFT lines of the spectrum in (a), the synthesis is at best poor (12.07% relative error).
The DCT analysis is much better but obviously still does not suffice (relative error 1.78%).
Using the traditional RDFS method with a ¼ 1:4 again, the relative error is quite low at 0.40%. The best
fit, however, is obtained by the ORDFS technique with a relative error of 0.01%. To achieve the same relative
error between synthesis and measurement with the DFT analysis compared to the ORDFS with nine
coefficients, no less than 168 DFT lines are necessary (180 lines would give an exact solution as this was the
Nyquist frequency).

In Fig. 4 the relative error as a function of the compression ration is shown for the 4 different techniques
that were used.
Fig. 2. Test set-up.
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Fig. 3. Second mode shape of an IPC beam using 7 coefficients: (a) DCT analysis, (b) DFT analysis, (c) RDFS analysis, (d) ORDFS

analysis and [solid curves indicate mode shapes and +-starred curves indicate synthesis.
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4.2. SLDV measurements on a car door

In this section measurements are shown that were obtained from a car door (Fig. 5) using Polytec PSV 300
laser Doppler vibrometer [10]. The measurement grid had a rectangular shape (65� 50 cm; 39� 25 grid
points) via a shaker with a swept sine excitation (0–200Hz; 1Hz resolution sampled at 512Hz). The shaker
was mounted in one of the door handle attachment points.

The mode shape that will be tackled is the second bending mode at 70Hz. The measurements have a signal-
to-noise ratio of 20 dB. This is quite low, but has been done deliberately, as to show the smoothing capabilities
of the ORDFS technique.

Fig. 6 shows the mode shape under inspection and its frequency spectrum (only the real parts of the images
are displayed; the imaginary parts give very similar results). Again data reduction will be applied directly to
the estimated mode shape. Fig. 7 shows a comparison of the mode shapes estimated with the DCT, DFT,
RDFS and ORDFS techniques using nine components. This value was chosen as it represents the maximum
possible compression using the regressive techniques. For the classical RDFS technique a and b were both
chosen equal to 1.4 [3]. In Fig. 8 the relative error of the four analysis methods from Fig. 7 is shown as
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Fig. 4. Relative error as a function of the compression ratio for the DFT, DCT RDFS and ORDFS technique; (. -line indicates DFT, - -
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Fig. 5. Measurement set-up of a car door with a SLDV.
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a function of the compression ratio. It is clear that for this two dimensional vibration pattern the same order is
respected as for the one dimensional IPC second bending mode. From Fig. 8 it can be concluded that the
classical RDFS performs worst for high compression ratios, despite the fact that the values chosen for a and b
should be optimal [3]. At very low compression ratios it performs almost as well as the ORDFS technique,
however, they are already quite low for the purpose at hand. The DFT does not perform exceptionally
anywhere over the compression range. For high compression ratios the ORDFS performs best, while at very
low compression ratios, the DCT technique proves superior. However, the relative error does not increase
much with increasing compression ratios, which is not the case for both other techniques discussed here.

The importance of the correct estimation of the a and b coefficients in the ORDFS technique is shown in
Fig. 9 where the relative error is shown as a function of a and b. By estimating the correct a and b for a given
compression ratio and then varying them in turn, the relative error is calculated. It is clear that for this
particular case (maximum compression) the correct estimation of these parameters is of great importance.
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Fig. 6. (a) image of the second bending mode of a car door in mm/s. (b) frequency spectrum of image (a) in dB.
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When decreasing the compression ratio, their contribution to a correct synthesis becomes less significant.
These conclusions complement those that were deducted from the results shown in Fig. 8.

The calculation times for the different techniques for each experiment discussed in this section are shown in
Table 2. The DCT, DFT and RDFS techniques exhibit roughly the same calculation time for each respective
example. The ORDFS is computationally more complex due to the least squares problem which must be
solved over a number of iterations.
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Table 2

Calculation times for the DCT, DFT, RDFS, and ORDFS techniques on the IPC beam (9 coefficients used) and car door (9 coefficients

used)

Calculation Time (s) IPC beam Car door (full)

DCT 0.08 0.07

DFT 0.01 0.08

RDFS 0.06 0.08

ORDFS 0.53 1.01

J. Vanherzeele et al. / Journal of Sound and Vibration 309 (2008) 858–867 867
5. Conclusions

In this article a novel data reduction method based on the RDFS approach introduced by Arruda, was
shown. This ORDFS was obtained by applying a nonlinear least-squares approach to estimate a priori

unknown coefficients. The technique proved quite robust and attained higher compression ratios than other
frequently used reduction techniques. The technique was compared to the existing DCT, DFT as well as the
classical RDFS, and proved more accurate on almost all accounts for equal compression ratios. This was
shown on simulations as well as real experiments on an IPC composite beam and a car door.
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